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Abstract in the Recycler [5] allowed to increase longitudinal phase
. - ace density several times, see more in Ref. [6].
The more beam is cooled, the less stable it is. In the 3‘53pThe last problem discussed here relates to a possibility

Enlth?/%CIfr F:]Ingti Stf:cl:]e?/ 8; GleV a;]nélp:otﬁpsna;%coole& coherent transverse two-beam instability between the
po Ith stochastic (. ansve se.y) and electron ( .)Cooéooled circulating antiproton beam and a cooling single-
ing. Since the machine is staying near the coupling re§-

. . ass electron beam. This instability is discussed since early
onance, cogpled optlc_a_l functions Sh.OUId be us_ed_ for st 0's [8], [9], but its understanding was not sufficient. Some
_b|||ty qqaly&s._ T.O stabilize b.eam agaln-st.the resistive way <ervations raised a question about a possibility of this in-
instability, a digital damper is used. Digital dampers Cagtability at the Recycler [10]

be described as linear operators with explicit time depen- Since velocities of the two beams are identical, their in-

dence, and that makes a principle difference with analogo&'@raction is local. Another important feature of this inter-

dampers. Theoretical description of the digital dampers Bction is its skew character due to the magnetic field in the

presented. Electron cooling makes possible a two-bea oler. As a result, without — y coupling of antiproton

|qstab|llty of the C(.)Ol.ed begrn with the elgctron beam. Speo'ptical modes, electron feedback to antiproton oscillations
cial features of this instability are described, and the r

dvis di d €M3 insensible for antiprotons. In more details this issue is
edy s discussed. discussed in [11].

INTRODUCTION TRANSVERSE COUPLING:

Analysis of transverse coherent instabilities in the Recy- SUBSTITUTION RULES

cler forced us to resolve three theoretical problems, all of For arbitrary coupling, the beam optics can be described
them being rather general. Here these problems with oiff terms of 4D eigenvectors. Hereafter, a parametriza-
solutions are described. tion suggested in [12] is used, where the 4 eigenvectors

The first one relates to transverse coherent instabilitieg, v_, = Vi, V,, V_y = V3 of a revolution matrix
near the coupling resonancgs, } = {v,}. As many ma- R are presented as follows:
chines, the Recycler operates in its vicinity. As a result,
single-particle motion is coupled, and the conventional op- i(1—u) + age ) w4+ .
tical formalism can be not valid. This problem was considY1 = (\/ﬁ? J (\/%1 J \/ﬂTyewl J wﬁwl)

) . 1z Bly

ered by many authors, most extensively in Refs. [1], [2],
[3]. Here, we suggest a solution, which is general and sim- v W+ oy g, i(1—u) + ag
ple at the same time [4]. The leading idea is to use canon-2 — (‘/@e fm NS e ’\/ﬂTy v Bay y) @
ical coordinates and momenta associated with the optical
eigenmodes. In this basis, beam motion gets to be uncowith R - V,, = exp(—ifim)V,. Components of
pled, and formally similar to conventional — y uncou- the 4D vectors are transverse coordinates and angles,
pled case. To solve the problem in this way, the wakeg:,d,,y,6,); in case of non-zero longitudinal magnetic
(impedances) have to be properly projected on the opticfiéld, the angles are modified according to a conventional
eigenvectors. As a result, the coupled problem is effegule for the canonical momenta. Eigenvector parameters
tively reduced to an uncoupled one, making the two prob3, .. 3,,, etc. are determined by the machine optics. The
lems identical - for any strength of coupling, any sort okymplecticity requires then a specific orthogonality
bunching, any wake function, any space charge, etc.

The second problem addressed here relates to digital VUV, = —2i6,,sgn(m) ; (2
dampers. Due to periodical digitizing with time= 1/ f, ) ) . . )
digital dampers are described as linear operators with ewhere a superscript means l-_lermlte_-conjuga_norimn is
plicit time dependence. Thus, a single frequericgt the the Kronecker symbokgn(im) is the sign function, an@J
entrance is transformed to an array of frequencies at th&the symplectic unit matrix. This formalism is a develop-
exit f +nfs,n = 0,41, 42, .... As a result, coasting beam ment of Ripken-Mais presentation [13],.and is closely re-
eigenmodes are linear superpositions of these combinktied to the Edwards-Teng parametrization [14], [12]. Any
frequencies, which is significant for high-frequency perturvectorX in the 4D phase space can be expanded over the

bations, f > f,/4. Implementation of a digital damper €igenvectors:
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An elementary act of two-particle interaction can be conwith
sidered in terms of the eigenmodes. Following [15], the el-
ementary kick for angles of the trailing parti¢lad,., Ad,) Ag, = 0; (7)

i 2
'° expressed as Apn = GnQn = _Iﬁ(wxﬂnw + Wyﬁny)‘]n .
Ab, = —e*aW,/(povo); Af, = —e*yW,/(povo). _ _ _

Equations (7) show how canonical momentum is perturbed

Here ¢ is the particle chargeyy and v, are a longitudi- by a small localized wake. Having that, the Vlasov equa-

nal velocity and momentum in the laboratory frameand ~ tion with all its results in the phase spagg, p:) are ex-

y are the offsets, andlV, , are the wake functions. In actly identical to the uncoupled caée, ¢,.), with the fol-

terms of the 4D vectoX this can be expressed as a perfowing substitution rules for the tung, = .. /(27) , wake

turbation AX = W - X with the wake matrix elements times beta-functioniV’,3,, and, thus, impedance times

W2,1 = —€2WI/(p0’U0), W4’3 = —62Wy/(p0v0) , and beta—functioanﬁr:

zeros for all other matrix elements. In terms of the com-

plex amplitudes”,,, this kick is expressed as Vg — V1j;
AC, = VI UAX = 23 GunCr . (3) ZoBe — ZuPro+ ZyPry

m

Note that these rules work both for coasting and bunched
The kick matrixG is not diagonal generally; so, when thepeam, and do not depend on a shape of the longitudinal
moderm is originally excited, the wake drives other modespotential well. Any solution of the Vlasov equation for
n # m as well. However, when the wake is small enoughan uncoupled beam can be immediately re-written to the
it can be treated as a small perturbation of the coheregbupled case with these simple rules. After that, the result
eigenmode amplitudes. In this case, in the first order @foks formally similar, while its practical consequences are
the perturbation theory, only diagonal elements of the pegenerally different because of two reasons. First, the in-
turbation count, similar to the Quantum Mechanics (see igoherent betatron spectrum is changed by the coupling,
more details [11]). The wake mixing can be considereg, — .,; thus, the Landau damping is changed. This
sufficiently small when the tune separation of the two trangyoint is missed in Refs. [2], [3], where denominators of
verse modes is much larger than the wake-driven coherefipersion integrals are based on the uncoupled incoherent
tune shift: tunes. And second, an amplitude of the coherent shift
|1 — va] > Aveon - (4)  Zypha+Z,B1, is afunction of coupling as well. The wake
: . o . - . substitution rule (8) is valid both for conventional driving
In reality, this condition is typically satisfied. If it is not, (or dipole) wake, and for the detuning (quadrupole) wake
non-diagonal elements of the kick matr& have to be Sabout the two w:akes see e. g. Ref. [16]).

taken into account as well, _Igading to some modifi(.:at.io The substitution rules (8) show disagreement both with
of results. Below, the condition (4) is assumed sat|sf|eqesuIts of Ref. [1], and Refs. [2], [3]

so the perturbation formalism is valid. Thus, only diago- A head-tail growth ratex was derived in Ref. [1] for

nall mlattm((jelerfnﬁntﬁ.,m = Gn in Eq. (3) count; they are a coupled optics within a two-particle model, and the two
calculated as Toflows. rates were found to be identical. In a simplified form, cited

2 in Ref. [17], the rate looks as

Poto o < VW, + v, W, ,
This result already shows how the wake is projected on the ., _— ,
eigenmodes. However, one more step may be useful foru herev;,, v, are .the chromaticities far from the COUP"“Q
derstanding. The complex amplitud€s can be presented resonance. Applied for the same problem, the substitution
with explicitly written real and imaginary parts as rules (8) lead to

/
Cn = %” + z%n ; (n=1,2). (6) an XV (BnaWo + oy Wy)
Clearly, the two results are significantly different. They

Itis straightforward to show that a linear phase space transtay become identical only if accidentally; /v, =
formation from the original variablegr, 6,,y, 6,) to the  (,,/5,, both forn = 1 andn = 2. Generally, this condi-
new variables(q1, p1, g2, p2) is canonical, since they are tion cannot be correct: the left-hand side is determined by
related to each other by a symplectic matrix, composeskxtupoles, while the right hand side is given by coupled
from real and imaginary parts of the eigenvectdfgsee linear optics.
Ref. [12]). Thusg, ¢2 are new canonical coordinates, and There are two significant disagreements between the
p1, p2 are the corresponding canonical momenta. It followsules (8) and Refs. [2], [3]. According to these papers, a
then, that a single excited mode gets the wake-driven kidkcalized skew-quad entangles coasting beam modes with



different longitudinal numbers. We cannot agree withmake analog damper too expensive. An analog-digital con-
that. Indeed, localization of skew quads, as well as normakrter (ADC) is a specific part of the digital damper, mak-
guads, still preserves the longitudinal wave number, sindeg its interaction with the beam different from a case of
the growth time is much longer than the revolution timeanalog dampers.

When the Vlasov equation is averaged over fast variables, The output signal of the analog-digital converter (ADC)
resulting equations on the slow growing coherent ampligoes with a sample frequengy = w,/(27) = 7, %, at the
tudes become homogeneous over the ring, so the longitutime of writing this statemenf; = 53 MHz, being exactly
nal Fourier harmonics are true eigenmodes of the coastifg8 harmonic of the revolution frequency (to filter out all
beam. The second disagreement between (8) and Refs. [Ble revolution harmonics). Presently, the input signal is
[3] is that denominators in dispersive integrals (e. g. Edligitized atN, = 4 times higher frequency, and then an
(7) of Ref. [2]) are uncoupled, which excludes correct calaverage of thes&’, numbers goes as the output.

culation of Landau damping from those equations. The ADC transforms any input frequency into a se-
quence of all the alias frequencies, shifted from the input
DIGITAL DAMPER one by multiples of the sample frequency. This equidis-

tant sequence of frequencies includes a single one inside
When the space charge tune shift is high compared witin interval0 < w < w,, which can be taken as a pa-
the coherent tune shiftAw,. > |Awyz|, the stability rameter of the entire set of the cross-talking frequencies.
threshold is almost independent on the impedance [6]. THeis continuous parameter is referred below as mark-
stability condition can be approximately presented as  ing frequency. Incoming frequencies = w + pw, , p =
0, +1, +2,...are transformed by the ADC into outgoing
[nn —&|op/p > Avse/Ztn , (9) frequenciesn, = w+qws, ¢=0, £1, £2,.... LetT be
the linear operator of the ADC; then, it is straightforward
wheren, n, £ are a slippage factor, harmonic numberto show that
and chromaticity;xy, is a numerical factorg, ~ 3 — 5 -
erending (Iogarithmically) on the space charge over the T exp (—iwpt) = Z Thy exp (—iwgt) ; (12)
impedance tune shifts ratio, and reflecting the particle dis-

tribution over the momentumav,, = Awgse/wpy. By the e
same reason, the stability condition is not sensitive to the 2 , 1 1 sin? (wp7s/2)
bunching factor, when the impedance is space-charge donmtres = N, SR eTs \ 2T N o gin (wprs)
inated,Aw,. > |Awz|. The stability condition can also be s 2N
presented in terms of a threshold frequetfgy = n:, /7o o ) (13 )
. Below, it is assumed that the phase factor in the ADC is
| — |€] compensated by a preceding delay line, providing all the
f=fin= T (10)  matrix elements real:
where the threshold chromaticigy; is _ 2 sin’ (w7 /2) 14
Tyy = S (14)
a Tew, sin | 552
Nry  mc*Ty s ( 2Na )
E,h = ) (11) . .
! dTenyeL g With the ADC, the frequency (representing actually the

) o ) wave length of the beam perturbation) is no longer a good
with e = copTy as the longitudinal r. m. s. emittance. narameter for the beam modes, each consisting of all the
When the chromaticity module is higher than the threshsgnosite harmonics. High enough harmonics are strongly
old, fin < 0,the beam is stable for any frequency (Modgjamped by Landau damping (and possibly a low-pass fil-
number). If the chromaticity cannot be elevated as higher): thus, they can be neglected and the infinite set of the
the beam is going to be unstable at harmonics below ”B%mposite amplitudes being cut.
threshold frequency. _ Let A, be an amplitude of the harmonig, = w + pw;.

When the synchrotron frequencies are small comparggere the digital damper the only way for the beam to inter-

with the coherent tune shift, they can be neglected in thet with itself, the time evolution of this harmonic would

stability analysis. For the Recycler, the synchrotron periodse gescribed as

are at the range of 1 second, while the instability growth

time is typically at least an order of magnitude shorter. In a4, _A i T A

this case, the tail of the bunch can act back on the head a0 e

through the multi-turn resistive wake. However, for the

space charge dominated impedance, the stability threshalith Ay as a low-frequency rate, determined by the pre-

is barely dependent on the wake value. amplifier. Influence of the low-pass filter is omitted here
To suppress unstable modgs> f;;, ~ 10 — 100MHz, for simplicity, but can be easily included. A solution of

transverse digital damper is implemented [5]. That choicthis set of linear equations is expressed in terms of eigen-

is determined by required one-turn delay, which wouldrectors, whose eigenvalues are the damping rates of the

(15)

q=—o0



beam modes. Impedance and Landau damping just atlte cooled or squeezed antiproton bunch. A remedy de-
their terms to the matrix diagonal elements: pends on the reason, so it was important to understand if the
antiproton-electron instability is responsible for the men-
tioned phenomena.

Two features of the beam-beam interactions are of prin-
(16) cipal importance. First, since the beams are moving with

Note that the matrist’ (14) is strongly degenerated: for the same velocitit_es, their inte_rac_tion _is local. Second, since
any finite dimension it is reduced, all its eigenvalues bUf'€"e is @ solenoidal magnetic field in the cooler, electron
one are exact zeroes. With impedance, half of these zerd&&nsverse motion is essentially a drift. Namely, a trans-
are getting unstable; they could be stabilized by the Land§"se Offset of the ion beam causes a dipole electric field,

damping. For Gaussian distribution, the Landau dampir@rcmg electrons to drift in the orthogonal transverse direc-
rate(A;), is calculated as tion. This drift gives its own electric field, acting back on
n

the ions. Being linear and local, this electron response can
pu be described as a perturbation of the ion’s revolution ma-
Ap = \/;Awscxn exp(—a} /2) , 20 = Awse/Awp(n),  trix. At first order, this non-symplectic perturbation matrix
(17) s proportional to a product of the electron and ion currents.
where the chromatic frequency spreaddu,(n)/w, = In the leading order, equations of motion for antiproton
Inn—£|6p/p. If the distribution is not Gaussian, the correc-("ion”) and electron complex offset§ . = ;. + iy . are
tion is obvious. Note that the dimensionless energy spre&gduced to the following set:
z,, does not change, if the beam is adiabatically bunched: ¢ K26 = 0. (18)
it depends on the longitudinal phase space density. In other ¢ ieSe T Mo
words, growth of the space charge tune shift with the beam o —ikeals =
bunching is compensated by an equal growth of the mo-. - .
mentum spread, so that the dimensionless spreadoes with k;. andk.4 as wave numbers, describing the beams in-

not change. As a consequence, the Landau damping grogééaﬁt'on' Here, mEdlﬁcauon of the beaml—beagw |r'1AtIeract|hon
linearly with the bunching factor. y the antiproton Larmor rotation is neglected. Also, the

The described analysis predicts several times increase am-blearln ph;se advanas d: kgel » Ped - keal var
the phase space density due to the digital damper. cJpe cooler length are assumed to be smadic, Yeq < 1.

rently, longitudinal phase space density is typically abou%olution of Egs. (18) leads to the cooler's matrix for an-

twice higher than its stability threshold value without the Proton beam, perturbed by its interaction with the elec-

trons; the perturbation is scaled by the interaction parame-

dA > ‘
dTP =—No Y TpA; — (ML), Ay, —i(Awyz), A,

g=—00

damper.
This section is essentially based on Ref. [6]. A different®’ o
way to present this problem was suggested later in Ref. [7]. @ = Yieted
Results of the two papers are close. proportional to both antiproton and electron currents. The
beam-beam interaction can be described by means of the
TWO-BEAM INSTABILITY AT perturbed revolution matriR, its bare valueR(®) and the
ELECTRON COOLING perturbation?:
Electron cooling is a powerful tool to increase phase R=R®+P.R®=1+P)-R?, (19

space density of hadron beams. Itis successfully used at the

Recycler [10], as well as at many other storage rings; tHeomplex shifts of the phase advandgs, = u, — e
Recycler's beam kinetic energy is at least an order of magf2en follow by means of the perturbation theory:
nitude higher than anywhere else. Circulating antiprotons 1

are cooled because of their thermal collisions with elec- Spin = —=VOTU.P. VO (20)

trons of a co-moving single-pass electron beam. The same- 2

velocity beams share a small portion of the ring circumwhereV,,, n = 1,2, are the optical eigenvectors (1). This
ference (20 m from 3.3 km). While individual antiproton-yields growth rates\,, = Im(du,,)/To, with T as the rev-
electron scattering leads to cooling, a coherent interactiaiution time. In the leading order, the perturbatibrx 4

of the two beams may lead to a two-beam instability. Almatrix P, calculated by means of Eqs. 18, has skew struc-
though this instability was never directly seen in the Reture; in terms of x 2 blocks it has only anti-diagonal el-
cycler, it still can be suspected to have place at high freements of equal values and opposite signs. The skew way
guencies or for quadrupole modes. A reason for this suspf the two-beam interaction leads to a conclusion that this
cion is that there is a lifetime degradation, and sometimé®/o-beam instability, if reveals itself at all, has to be highly
emittance growth, with increase of the antiproton densitgensitive tox — y coupling of the unperturbed antiproton
happened either with cooling or with longitudinal squeezesigenmodes. Indeed, since the electron response goes in
Another possible explanation to these phenomena is an eaa orthogonal direction to the original antiproton offset, a
citation of single-particle resonances by a space charge wbrk of the resulting force acting back on the antiproton



beam is not zero only if the antiproton mode is not planeeam in the Recycler.

[11]. Thus, in a leading order, the growth rate has to be First, a method to treat — y coupling for analysis of
proportional to an antiproton coupling parameter, responddeam transverse coherent oscillations is described. The
ble to a degree of circularity of the antiproton optical modemethod effectively reduces a coupled problem to an un-
The described sequence of calculations leads to the followeupled one, making the two problems identical. Another

ing result for the growth rate: problem outlined here relates to use of a digital damper
for stabilization of beam coherent motion. Digital dampers

A, = 4 Qhay T 7\/5“519 sin vy (21) are described by explicit time-dependent linear operators,

2To ! so they do not preserve a frequency of the signal. Modi-

where k,, describes the degree of circularity of the anfication of the stability analysis with the digital damper is
tiproton optical mode. By a general property of the Twisglescribed. A third problem relates to two-beam coherent
parameters,/ 1,81y sinvy = /P20 sinvn (see Ref instability in electron cooling. The most important con-
[12]). In a special case, when the antiprotor- y cou- clusion is extreme sensitivity of this instability to — y
pling is driven only by the solenoidal field in the cooler,coupling of the antiproton optical modes. More precisely,

the growth rate reduces to: it is sensitive to a degree of circularity of these modes. Al-
though the problems were driven by specific conditions at
a B, 1 . .
Ac=+ ) (22)  Recycler, their solutions are general.

DL 4 (= 1) 102,
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